Types of gas turbines
Aeroderivatives and jet engines
Airbreathing jet engines are gas turbines optimized to produce thrust from the exhaust gases, or from ducted fans connected to the gas turbines. Jet engines that produce thrust primarily from the direct impulse of exhaust gases are often called turbojets, whereas those that generate most of their thrust from the action of a ducted fan are often called turbofans or (rarely) fan-jets.
Gas turbines are also used in many liquid propellant rockets, the gas turbines are used to power a turbopump to permit the use of lightweight, low pressure tanks, which saves considerable dry mass.
Aeroderivatives are also used in electrical power generation due to their ability to startup, shut down, and handle load changes more quickly than industrial machines. They are also used in the marine industry to reduce weight. The GE LM2500 and LM6000 are two common models of this type of machine.
Amateur gas turbines A popular hobby is to construct a gas turbine from an automotive turbocharger. A combustion chamber is fabricated and plumbed between the compressor and turbine. Like many technology based hobbies, they tend to give rise to manufacturing businesses over time. Several small companies manufacture small turbines and parts for the amateur. See external links for resources.
Auxiliary power units
Auxiliary power units (APUs) are small gas turbines designed for auxiliary power of larger machines, such as those inside an aircraft. They supply compressed air for aircraft ventilation (with an appropriate compressor design), start-up power for larger jet engines, and electrical and hydraulic power.
Industrial gas turbines for electrical generation
Industrial gas turbines differ from aeroderivatave in that the frames, bearings, and blading is of heavier construction. Industrial gas turbines range in size from truck-mounted mobile plants to enormous, complex systems. They can be particularly efficient——up to 60%——when waste heat from the gas turbine is recovered by a heat recovery steam generator to power a conventional steam turbine in a combined cycle configuration. They can also be run in a cogeneration configuration: the exhaust is used for space or water heating, or drives an absorption chiller for cooling or refrigeration. A cogeneration configuration can be over 90% efficient. The power turbines in the largest industrial gas turbines operate at 3,000 or 3,600 rpm to match the AC power grid frequency and to avoid the need for a reduction gearbox. Such engines require a dedicated enclosure, both to protect the engine from the elements and the operators from the noise.
Simple cycle gas turbines in the power industry require smaller capital investment than either coal or nuclear power plants and can be scaled to generate small or large amounts of power. Also, the actual construction process can take as little as several weeks to a few months, compared to years for base load power plants. Their other main advantage is the ability to be turned on and off within minutes, supplying power during peak demand. Because they are less efficient than combined cycle plants, they are usually used as peaking power plants, which operate anywhere from several hours per day to a couple dozen hours per year, depending on the electricity demand and the generating capacity of the region. In areas with a shortage of base load and load following power plant capacity, a gas turbine power plant may regularly operate during most hours of the day and even into the evening. A typical large simple cycle gas turbine may produce 100 to 300 megawatts of power and have 35–40% thermal efficiency. The most efficient turbines have reached 46% efficiency.
Compressed air energy storage
One modern development seeks to improve efficiency in another way, by separating the compressor and the turbine with a compressed air store. In a conventional turbine, up to half the generated power is used driving the compressor. In a compressed air energy storage configuration, power, perhaps from a wind farm or bought on the open market at a time of low demand and low price, is used to drive the compressor, and the compressed air released to operate the turbine when required.
Turboshaft engines
Turboshaft engines are often used to drive compression trains (for example in gas pumping stations or natural gas liquefaction plants) and are used to power almost all modern helicopters. The first shaft bears the compressor and the high speed turbine (often referred to as "Gas Generator" or "N1"), while the second shaft bears the low speed turbine (or "Power Turbine" or "N2"). This arrangement is used to increase speed and power output flexibility.
Radial gas turbines
1963, Norway, Jan Mowill initiated the development at Kongsberg Våpenfabrikk. Various successors have made good progress in the refinement of this mechanism. Owing to a configuration that keeps heat away from certain bearings the durability of the machine is improved while the radial turbine is well matched in speed requirement
Scale jet engines
Also known as miniature gas turbines or micro-jets.
Many model engineers relish the challenge of re-creating the grand engineering feats of today as tiny working models. Naturally, the idea of re-creating a powerful engine such as the jet, fascinated hobbyists since the very first full size engines were powered up by Hans von Ohain and Frank Whittle back in the 1930s.
Recreating machines such as engines to a different scale is not easy. Because of the square-cube law, the behaviour of many machines does not always scale up or down at the same rate as the machine's size (and often not even in a linear way), usually at best causing a dramatic loss of power or efficiency, and at worst causing them not to work at all. An automobile engine, for example, will not work if reproduced in the same shape at the size of a human hand.
With this in mind the pioneer of modern Micro-Jets, Kurt Schreckling, produced one of the world's first Micro-Turbines, the FD3/67. This engine can produce up to 22 newtons of thrust, and can be built by most mechanically minded people with basic engineering tools, such as a metal lathe. Its radial compressor, which is cold, is small and the hot axial turbine is large experiencing more centrifugal forces, meaning that this design is limited by Mach number. Guiding vanes are used to hold the starter, after the compressor impeller and before the turbine. No bypass within the engine is used.
Also known as:
- Turbo alternators
- MicroTurbine (registered trademark of Capstone Turbine Corporation)
- Turbogenerator (registered tradename of Honeywell Power Systems, Inc.)
Microturbines are becoming widespread for distributed power and combined heat and power applications. They are one of the most promising technologies for powering hybrid electric vehicles. They range from hand held units producing less than a kilowatt, to commercial sized systems that produce tens or hundreds of kilowatts.
Part of their success is due to advances in electronics, which allows unattended operation and interfacing with the commercial power grid. Electronic power switching technology eliminates the need for the generator to be synchronized with the power grid. This allows the generator to be integrated with the turbine shaft, and to double as the starter motor.
Microturbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to footprint and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Microturbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust, whereas the waste heat of recriprocating engines is split between its exhaust and cooling system. However, reciprocating engine generators are quicker to respond to changes in output power requirement and are usually slightly more efficient, although the efficiency of microturbines is increasing. Microturbines also lose more efficiency at low power levels than reciprocating engines.
They accept most commercial fuels, such as gasoline, natural gas, propane, diesel, and kerosene as well as renewable fuels such as E85, biodiesel and biogas.
Microturbine designs usually consist of a single stage radial compressor, a single stage radial turbine and a recuperator. Recuperators are difficult to design and manufacture because they operate under high pressure and temperature differentials. Exhaust heat can be used for water heating, space heating, drying processes or absorption chillers, which create cold for air conditioning from heat energy instead of electric energy.
Typical microturbine efficiencies are 25 to 35%. When in a combined heat and power cogeneration system, efficiencies of greater than 80% are commonly achieved.
MIT started its millimeter size turbine engine project in the middle of the 1990s when Professor of Aeronautics and Astronautics Alan H. Epstein considered the possibility of creating a personal turbine which will be able to meet all the demands of a modern person's electrical needs, just like a large turbine can meet the electricity demands of a small city. According to Professor Epstein current commercial Li-ion rechargeable batteries deliver about 120-150 Wh/kg. MIT's millimeter size turbine will deliver 500-700 Wh/kg in the near term, rising to 1200-1500 Wh/kg in the longer term.
External combustion
Most gas turbines are internal combustion engines but it is also possible to build an external combustion gas turbine which is, effectively, a turbine version of a hot air engine.
External combustion has been used for the purpose of using pulverized coal or finely ground biomass (such as sawdust) as a fuel. External combustion gas has been used both directly and indirectly. In the direct system, the combustion products travel through the power turbine. In the indirect system, a heat exchanger is used and clean air travels through the power turbine. The thermal efficiency is lower in the indirect type of external combustion, however the blades are not subjected to combustion products.